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Abstract. We study the dynamics of a dimer moving on a periodic one-dimensional substrate as a function
of the initial kinetic energy at zero temperature. The aim is to describe, in a simplified picture, the micro-
scopic dynamics of diatomic molecules on periodic surfaces, which is of importance for thin film formation
and crystal growth. We find a complex behaviour, characterized by a variety of dynamical regimes, namely
oscillatory, “quasi-diffusive” (chaotic) and drift motion. Parametrically resonant excitations of internal
vibrations can be induced both by oscillatory and drift motion of the centre of mass. For weakly bound
dimers a chaotic regime is found for a whole range of velocities between two non-chaotic phases at low and
high kinetic energy. The chaotic features have been monitored by studying the Lyapunov exponents and
the power spectra. Moreover, for a short-range interaction, the dimer can dissociate due to the parametric
excitation of the internal motion.

PACS. 68.35.Ja Surface and interface dynamics and vibrations – 05.45.-a Nonlinear dynamics and
nonlinear dynamical systems – 47.52.+j Chaos

1 Introduction

Thin-film growth is a topic of great importance both from
the theoretical and experimental point of view [1]. In or-
der to build a microscopic theory of crystal growth, it is
fundamental to understand isolated-adatom surface dif-
fusion, and indeed a great amount of work has been de-
voted to the monomer case during the last decades [2–6].
Once individual atoms are adsorbed on a surface, they
can meet each other thus forming dimers. In spite of this
very simple morphology, dimers display a peculiar and in-
triguing diffusive behaviour [7–14]. In this paper we show
that the strong nonlinearities arising during the motion
of dimers on a periodic substrate make dimer dynamics a
very complex phenomenon. Here, we study the problem of
a one-dimensional dimer moving on a rigid periodic sub-
strate at T = 0. A one-dimensional model can be relevant
since one-dimensional dimer diffusion occurs in real sys-
tems, in particular along steps and on channeled (110)
metal surfaces [15]. Although some aspects of dimer ener-
getics and dynamics have been recently considered (see in
particular Refs. [8,9,11]), here we focus on the nonlinear
microscopic dynamics of this model, which gives rise to
different regimes depending on the initial velocity and on
the strength of the dimer interaction. In particular, chaotic
motion with long jumps is found between the oscillatory
behaviour at low initial kinetic energy and the drift motion
at high initial kinetic energy. In all these regimes, situa-
tions can be found where the centre of mass (CM) motion
drives excitations of the dimer vibrations which can lead
to dissociation for short range interatomic interactions.

a e-mail: fusco@sci.kun.nl.

Such a complexity in the dynamical behaviour at T = 0
is relevant to understand the thermal diffusion problem.
In particular, the chaotic behaviour which dominates for
weakly bound dimers can account for the non-trivial de-
pendence of the diffusion constant on the strength of the
interatomic interaction reported in reference [9].

Chaotic motion can occur in nonlinear systems with at
least three variables. Much studied is the case of systems
characterized by a single spatial coordinate subjected to
an external drive [16–20]. Besides, a system of interacting
particles can exhibit chaotic motion with “quasi-diffusive”
features in one dimension [21–23]. This can happen even
without the presence of an external drive, as we will show
below. In view of the sinusoidal potential and of the phase
space dimension, our model bears some resemblance to an
undriven double pendulum [24–26]. However, in our case,
the possibility to perform either oscillatory or drift motion
leads to the appearance and subsequent disappearance of
chaos for increasing initial kinetic energy.

In Section 2 we describe our model. Section 3 is de-
voted to the discussion of the linearized version of the
system, in which a semi-analytical treatment can be per-
formed. Section 4 analyses the dynamics of the full sys-
tem, and in Section 5 we discuss the chaotic properties
of the system. Some concluding remarks are presented in
Section 6.

2 Model

We consider a dimer moving on a periodic one-dimensional
substrate at zero temperature without damping. The
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particle-substrate interaction is modelled by a periodic
function U :

U(x1, x2) = U0(2 − cos(kx1) − cos(kx2)) (1)

where xi represents the spatial coordinate of particle i
(i = 1, 2), 2U0 is the potential barrier per particle and
k = 2π/a, a being the substrate lattice constant. Most
of the results presented here have been obtained using a
harmonic interatomic potential:

V (x1, x2) =
K

2
(x2 − x1 − l)2, (2)

where K is the force constant and l is the spring equi-
librium length. We also used short range interatomic in-
teractions, such as the Lennard-Jones (LJ) potential (see
Sect. 4.2).

The equations of motion are:{
mẍ1 = K(x2 − x1 − l) − kU0 sin(kx1)

mẍ2 = K(x1 − x2 + l) − kU0 sin(kx2),
(3)

where m is the mass of each particle. We rescale the vari-
ables in the following way:

x̃i = kxi, t̃ = t/τ, Ũ0 = U0/ET ,

l̃ = kl, K̃ = K/(ET k2)

where ET is a reference energy and τ = [m/(ET k2)]1/2.
In these units the equations of motion become (in the
following we will omit the tildes for simplicity){

ẍ1 = K(x2 − x1 − l) − U0 sin x1

ẍ2 = K(x1 − x2 + l) − U0 sin x2.
(4)

In the CM and relative coordinates frame we have{
ẍCM = −U0 sinxCM cos(xr/2 + l/2)

ẍr = −2Kxr − 2U0 cosxCM sin(xr/2 + l/2)
(5)

where xCM = (x1 + x2)/2 is the CM coordinate and
xr = x2 − x1 − l is the relative coordinate. We concen-
trate on the commensurate case in which l = a = 2π,
i.e. the spring natural length is equal to the period of the
substrate potential. In this situation the minimum energy
configuration does not depend on K (namely x1 = 0 and
x2 = a minimize the total potential energy) and moreover
a linearization around xr = 0 offers the possibility to treat
the problem in a semi-analytical way. This has the advan-
tage to give a closer insight on the dynamical features of
this system.

We perform molecular dynamics simulations, integrat-
ing the equations of motion (4) using a velocity-Verlet
algorithm, with time step ∆ = 10−4.

3 Dynamics of the linearized system

When xr � 0, as at the beginning of the motion starting
from equilibrium, we can linearize in xr the equations of
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Fig. 1. Relation between amplitude and frequency of oscilla-
tion as given by the solution of equation (6a) (a), between CM
frequency of oscillation and CM initial velocity (b) and be-
tween the effective stretching frequency and CM initial veloc-
ity (c), obtained by numerical calculations for U0 = 0.6 (solid
lines). The lower borders of instability regions as a function
of K are plotted in (d). The vertical dashed lines in (a) and
in (b) indicate respectively the frequency of small oscillations√

U0 = 0.774 and the velocity corresponding to the thresh-
old for drift motion

√
4U0 = 1.5492. The horizontal dashed

lines in (c) and (d) correspond respectively to ω0eff =
√

2K
(K = 0.1), which is reached when v0 ≥ √

4U0, and to the
energy threshold for drift motion

√
4U0.

motion (5):

ẍCM � U0 sin xCM (6a)

ẍr � −2K

(
1 − U0

2K
cosxCM

)
xr. (6b)

As initial conditions we choose

xCM (0) = x0 = a/2 ẋCM (0) = v0

xr(0) = 0 ẋr(0) = 0.

In this way we give an initial kinetic energy to the dimer
at equilibrium (alternatively one could have chosen to
give an initial potential energy, i.e. ẋCM (0) = 0 and
xCM (0) �= a/2). The minimum kinetic energy for the CM
to get out of the potential is v2

0 = 4U0 if v1 = v2 = v0 (vi

is the initial velocity of particle i). Below this threshold
value (namely v0 <

√
4U0) equation (6a) coincides with

that of a classical pendulum for which the amplitude as a
function of the period of oscillation is known in terms of
an elliptic integral [27], as shown in Figure 1a. The max-
imum amplitude of oscillation of the CM is determined
by v0. In this case

xCM � x0 +
C

2
sin(ωt). (7)

with ω = ω(v0) (see Fig. 1b). This means that

cosxCM � A + B cos(2ωt) (8)
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with A and B depending on v0 via ω. Inserting (8) into
the equation of motion for xr (6b) we obtain the equation
of a parametric oscillator:

ẍr = −ω2
0eff (1 + h cos(2ωt))xr (9)

where ω0eff ≡ √
2K − AU0 and h ≡ BU0/ω2

0eff . It is worth
noting that the stretching frequency of the free dimer√

2K becomes
√

2K + U0 in the external potential (this
is true when the CM is fixed at the equilibrium position).
But in equation (6a) the motion of xr is further affected
by the oscillatory behaviour of the CM and its natural
frequency changes into ω0eff ≡ √

2K − AU0. Conversely,
when v0 >

√
4U0 the CM performs a drift motion, i.e.

xCM � x0 + 〈vCM 〉t, (10)

where 〈·〉 denotes time averages and 〈vCM 〉 is the drift
CM velocity. By defining ω as ω = 〈vCM 〉/2 the equation
for xr remains in the form (9) with ω0eff ≡ √

2K and
h ≡ U0/(2K) (i.e. A = 0 and B = 1).

The CM motion (either oscillatory or drifting), as con-
sidered in the linearized equation (6a), drives parametri-
cally the internal motion of the dimer. We establish the
instability ranges by monitoring for which values of the ini-
tial velocity v0 an exponential increase of xr is found. The
relation between the initial velocity v0 and the frequency
ω0eff is shown in Figure 1c for several values of v0 <

√
4U0.

In order to understand the energy threshold for the exci-
tation of parametric resonances, we plot the lower borders
of the instability regions as a function of K in Figure 1d
when the total initial kinetic energy E0

kin = v2
0 is less

than the potential barrier 4U0. In this way we can iden-
tify a critical value K = Kc above which the parametric
resonance can be excited only if the CM performs a drift
motion (e.g. E0

kin > 4U0). It turns out that Kc � 0.3 for
U0 = 0.6. Since ω0eff is determined by K, by consider-
ing different values of K we can construct the standard
picture for parametric instabilities relating h to ω. One
can recognize the main resonance for ω = ω0eff (Fig. 2).
The boundaries of the region of instability are given by
the stars in Figure 2. The different curves represent h
as a function of ω for different values of K. Note that,
at fixed K, h increases when ω decreases (e.g. when the
amplitude of oscillation increases and v0 <

√
4U0), but

when the CM overcomes the barrier, h reaches the con-
stant value U0/(2K). Moreover, the range of frequency in
which instability is observed is larger for smaller values
of K. An example of parametric resonance is shown in
Figure 3a: xr oscillates and its amplitude increases expo-
nentially. In Figure 3b a blow up of the behaviour of xr

and of the drive xCM , oscillating at the same frequency,
is also shown.

4 Dynamics of the full system

4.1 Harmonic case

Now we consider the original system of equations of mo-
tion equation (5). The linearization given by equation (6a)
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Fig. 2. Relation between frequency and the parameter h of
equation (9) for different values of K (from top to bottom:
K = 0.05, 0.1, 0.2, 0.3, 0.4, 0.6, 1, 2, 5) and U0 = 0.6. The region
in which the parametric resonance occurs is bounded by the
stars.
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Fig. 3. Comparison between relative and CM motion of the
linearized system equation (6a) (upper panel) and those ob-
tained by integrating the complete system equation (4) (lower
panel). The relative motion plotted in (a) is the numerical re-
sult of the integration of equation (9). The CM and relative
coordinate of the linearized equations, which are plotted in (b),
oscillate with the same frequency. The CM of the full system
is shown in (d) where we note a decrease of amplitude at the
point in which the relative motion starts to decrease in (c).
Only the envelope of the rapid oscillations of xr is visible on
the left panel ((a) and (c)). The parameters used in the sim-
ulation are U0 = 0.6, K = 0.05 and v0 = 0.7. All lengths are
rescaled to the substrate lattice constant a.

allows to understand some of the dynamical features of
the full system. However, the CM and relative motion
equations are coupled and this results in a qualitatively
different behaviour with respect to the simple approxima-
tion discussed in Section 3. In particular, we note that the
feedback of xr on xCM drives the CM out of the instability
window found for the linearized system equation (9). An
example is illustrated in Figure 3, where we compare the
motion of the complete and of the linearized system. As we
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Fig. 4. Numerical simulations of equation (5) for U0 = 0.6,
K = 0.05 and v0 = 1.54. The CM (solid line) and relative mo-
tion (dashed line), rescaled to the substrate lattice constant a,
are shown.

can see in Figure 3c, the parametric increase of xr found
for the linearized equations is followed by a decrease, due
to the fact that the feedback of xr on xCM causes a change
of the amplitude of the CM at that point (t � 400 in Fig.
3d). However, when xr decreases, the instability reappears
and the relative motion increases again (although it is not
shown in the figure). The system gets in and out the in-
stability window, because we are considering a case that is
almost at the border. Instead, in Figure 4 we show a case
which is in the centre of the region of instability: we can
note that after an initial transient the relative motion is
always excited, and its behaviour is more irregular so that
it is not possible to identify a clear unique frequency of
oscillation and a unique rate of increase. This behaviour is
caused by the shift in position inside the instability win-
dow which in turn produces a shift in frequency and rate
of increase. Note that the excitation of the internal motion
leads to a CM motion which would not have occurred if
the dimer had been rigid. In that case the CM would have
kept the initial oscillatory behaviour around the equilib-
rium position. Here, instead, the internal vibrations play a
role similar to that of a heat bath and drive the CM away
from the minimum with jumps across one or more poten-
tial wells. In fact, for a non-rigid dimer, it is possible to get
out of the well even if v0 <

√
4U0. This happens because if

the internal motion is excited, it is possible that one par-
ticle remains in the minimum whereas the other reaches
the nearest maximum. In this way the energy balance is:

E0
kin =

1
2
v2
1 +

1
2
v2
2 = 2U0 +

1
2
K(a/2)2 (11)

and if K is sufficiently small the right-hand side is smaller
than 4U0 (we assume v1 = v2 = v0). Thus vibrational
energy can be effective in overcoming the barrier. The re-
sulting motion of the dimer (Fig. 4) can be characterized
as chaotic, as shown later in Section 5.

It is interesting that the chaotic motion described
above occurs at velocities below and above the thresh-
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Fig. 5. Numerical simulations of equation (5) for U0 = 0.6,
K = 0.1 and v0 =

√
4U0 � 1.5492: (a) CM trajectory (solid

line) and relative motion (dashed line); (b) kinetic energy;
(c) substrate potential energy; (d) spring potential energy.

old
√

4U0 for drift motion in the linearized system. This is
due to a coexistence of long jumps with localized motion
which persists for a certain range of initial energies, as
suggested in reference [6]. In Figure 5a we show the case
where v0 =

√
4U0. At the beginning, the CM performs a

step-like motion: every time it overcomes a barrier it gets
stuck for a while in the next minimum before overcom-
ing the next barrier. In this initial stage xr = 0. After xr

gets excited, this step-like motion disappears. The para-
metric resonance which one would have expected in this
case for the simplified system is not visible because of the
reciprocal influence of CM and relative motion, which in-
hibits the increase of amplitude of xr. Note that when the
internal motion is excited almost all the energy is trans-
ferred to the vibrational modes, as it can be seen by the
corresponding peaks in Figure 5d.

By further increasing the initial kinetic energy the dy-
namics becomes again non chaotic, and the CM performs
a drift motion with constant velocity unless the conditions
for parametric excitation given by equation (9) are met.
This does not occur for the small values of K considered
up to now. In fact, a dimer presents only one character-
istic frequency so that conditions for parametric excita-
tion are generally met either in the oscillatory or in the
drift regime. The situation would be different for a larger
molecule where different vibrational modes could be ex-
cited for different values of v0. In Figure 6 we show one
situation for large K where the drift CM motion excites
the internal motion through a parametric resonance for
drift velocity twice the dimer natural stretching frequency
ω0 =

√
2K. When the relative motion acquires a large am-

plitude, deviations from the linear behaviour of xCM are
observed.

In Figure 7 we summarize for three values of K the
effect of different v0 (at fixed U0) on the CM motion. In-
creasing v0, a complex transition from oscillatory regular
motion to chaotic motion and then to a drift regime can
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Fig. 6. Numerical simulations of equation (5) for U0 = 0.6,
K = 0.5 and v0 = 2.5. In (a) we show the CM motion (solid
line) with a linear fit for t < 200 (dashed line), while the rela-
tive coordinate is plotted in (b).

take place depending on the value of K. For K = 0.05
(Fig. 7a), resonant excitation of the internal motion oc-
curs for v0 > 0.65 as given in Figure 1d. Above this value,
first a regime with recursive excitation of xr, as in Fig-
ure 3c, takes place so that 〈xCM 〉 = a/2 and 〈vCM 〉 = 0.
At v0 > 1.3 the escape from the well described by equa-
tion (11) becomes possible. The resulting (chaotic) be-
haviour of xCM in this regime is shown by the dashed line
in Figure 7a for v0 = 1.65. The CM motion in this regime
behaves as 〈x2

CM 〉 � tα (1 < α < 2) with 〈vCM 〉 � 0, i.e.
it is “quasi-diffusive”, that is to say neither purely diffu-
sive nor ballistic. This behavior extends up to v0 < 1.68,
i.e. well above the “threshold”

√
4U0. Above, a drift mo-

tion xCM (t) � x0 + 〈vCM 〉t occurs. For a larger K = 0.3
(Fig. 7b) the quasi-diffusive motion starts occurring at
values of v0 � √

4U0 up to v0 = 2.2, where drift motion is
recovered. Lastly for K = 0.5 (Fig. 7c), there is no chaotic
regime. The drift motion starts at v0 =

√
4U0 and devia-

tions only occur for a narrow range of velocities where xr

becomes parametrically excited, as shown in Figure 6.
We may estimate from equation (11) the critical K

value above which the internal motion is not effective in
making the CM overcome the potential barrier for v0 <√

4U0. Namely

2U0 +
1
2
Kcπ

2 = 4U0, (12)

and for U0 = 0.6 we find Kc � 0.35. As a consequence for
K > Kc no chaotic motion is found.

4.2 Lennard-Jones case

Now we consider the effect of replacing the harmonic in-
teraction (2) with a finite-range potential. As a simple
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Fig. 7. Numerical simulations of equation (5) for U0 = 0.6,
three values of K and several values of v0. The CM motion
is plotted for K = 0.05 (a), K = 0.3 (b) and K = 0.5 (c).
The different curves in each graph are obtained with dif-
ferent initial velocities. From bottom to top in each graph
v0 = 0.63, 1.65, 1.68 (a), v0 = 1.5, 1.85, 2.15, 2.2 (b), v0 =
1.54, 1.55, 2.2, 2.5, 2.55 (c). Note the deviation from linear be-
haviour in (c) for v0 = 2.5 (see Fig. 6 and text).

choice, we take the LJ potential, given by

VLJ(r) = 4ε

[(σ

r

)12

−
(σ

r

)6
]

(13)

with r ≡ |x2−x1| and a cutoff at r = 2.5σ. To recover the
harmonic interaction close to the minimum, we impose the
equilibrium distance to be equal to the spring equilibrium
length and the second derivative of VLJ to be equal to the
spring constant, namely:


rmin = 6

√
2σ = l

d2VLJ

dr2

∣∣∣
r=rmin

=
24ε

σ2

[
26

3
√

128
− 7

3
√

16

]
= K

(14)

whence 


σ =
l

6
√

2

ε =
Kl2

72
·

(15)

At variance with harmonic interactions, a finite-range po-
tential allows dissociation of particles. This is clearly seen
in Figure 8, where the time behaviour of the CM and rel-
ative motion is plotted comparing the harmonic and LJ
potentials. The CM is the same in the two cases when
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Fig. 8. Numerical simulations of the equation of motion of
a dimer for harmonic (a), (b) and LJ interactions (c), (d).
The CM and relative motion are shown. The parameters are
U0 = 0.6, K = 0.05, v0 = 1.12 for the harmonic potential.
The parameters of the LJ have been chosen according to equa-
tion (15): σ � 5.598 and ε � 0.0274.

xr = 0, i.e., at the beginning of the motion. Then, as the
relative motion starts to increase, xr given by LJ is found
very similar to the harmonic xr, but then the amplitude
of the oscillations due to the LJ potential becomes larger.
At t � 420 the two particles dissociate and xr starts to
increase very fast since only one particle moves.

In Figure 9 we show a similar process for the case
where the CM performs a drift motion. We observe that
the increase of amplitude of xr occurs approximately at
the same time for both harmonic and LJ interactions. As
just noted above, at this point a departure from the linear
behaviour of the CM takes place. While large oscillations
persist in the harmonic xr, breaking of the interparticle
bond is found in the LJ case. This shows that the reso-
nant excitation of internal vibrations could be effective in
leading to dissociation of molecular bonds.

5 Chaotic dynamics

The dynamics described in Section 4.1 shows very com-
plex features, in spite of the simplicity of our model. The
quasi-diffusive, irregular motion found for small values
of K, as in Figure 4, resembles characteristics peculiar
to a chaotic regime. This is confirmed by looking at the
temporal evolution of two trajectories starting at infinites-
imally distant points. For example, Figure 10 shows two
long CM trajectories with initial spatial conditions differ-
ing from 10−6. The behaviour of the CM is unpredictable
and the trajectories diverge for the entire simulation
time. This is a qualitative signature of chaotic dynamics.
In order to characterize more quantitatively the chaotic
motion, we have numerically computed the Lyapunov ex-
ponent, which measures the rate of divergence of nearby
trajectories (see [28,29]):

δx(t) ∼ δx(0)eλt, (16)
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Fig. 9. Numerical simulations of the equation of motion of a
dimer for harmonic (a), (b) and LJ interactions (c), (d). The
CM and relative motion are shown. The dashed lines in (a)
and (c) are linear fits to xCM for t < 80. The parameters are
U0 = 0.6, K = 0.4 and v0 = 2.15 for the harmonic poten-
tial. The parameters of the LJ have been chosen according to
equation (15): σ � 5.598 and ε � 0.219.
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Fig. 10. CM motion for U0 = 0.6, K = 0.1 and v0 =
√

4U0 �
1.5492, starting from different initial conditions: x1(0) = 0,
x2(0) = a (solid line) and x1(0) = 10−6, x2(0) = a + 10−6

(dashed line).

where δx(t) denotes the separation between nearby tra-
jectories and λ is the Lyapunov exponent.

In an n− dimensional phase space n Lyapunov expo-
nents can be calculated, but we limit ourselves to the com-
putation of the maximal Lyapunov exponent λmax, which
is sufficient to signal the occurrence of chaos. If λmax > 0
the motion is unstable and chaos may occur, while if
λmax < 0 we have a regular stable motion (λmax = 0
corresponds to a stable quasi-periodic motion). We show
λmax as a function of time for a small value of K (K = 0.05
and U0 = 0.6) in Figure 11 for different v0. The satura-
tion values of the different curves give a measure of the
corresponding maximal Lyapunov exponent.

We note that for low values of v0 (v0 = 0.63 in the
figure) λmax = 0, meaning that the motion in this range
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Fig. 11. Temporal behaviour of the maximal Lyapunov ex-
ponent for U0 = 0.6, K = 0.05 and different initial velocities
v0, which are reported beside each curve, except for the two
curves that saturate at zero, which correspond to v0 = 0.63
and v0 = 1.68.

is regular: xCM oscillates periodically and xr � 0. When
the internal motion starts to be excited (0.65 ≤ v0 < 1.4)
λmax jumps to a positive small value (λmax � 0.02),
signalling that a weak chaotic dynamics is induced by the
relative coordinate. For larger values of v0 (1.4 ≤ v0 <
1.68), as the CM gets out of the minimum of the potential
well and performs an irregular motion of the type shown
in Figure 4, the magnitude of λmax suddenly increases of
about one order of magnitude (λmax � 0.1), but jumps
again discontinuously to zero when v0 is high enough for
the CM to perform a drift motion and xr � 0. In this way,
we have a complex transition from non-chaotic to chaotic
motion and vice versa as a function of the initial velocity.
This behaviour is different from that of the double pen-
dulum, where the non-chaotic regime is not recovered for
large initial velocities [24,25].

As a further indicator of such a dynamical be-
haviour we have plotted the phase space projected on
the (xCM , vCM ) plane in Figure 12, for four different ini-
tial velocities. The phase plot in (a) is a simple closed
loop corresponding to a regular oscillatory motion where
λmax = 0. As the initial velocity increases more com-
plex features appear: in the weak chaotic regime (b) extra
loops are present, while the phase plot in (c) becomes
very much folded and irregular. The regular dynamics is
restored again in (d), where there is a drift motion of the
CM, with vCM oscillating around the drift velocity.

Power spectrum analysis is usually considered as an
additional effective method to detect chaos. We have cal-
culated the power spectra of xr by using a fast Fourier
transform and we show them in Figure 13 for the same val-
ues of U0, K and v0 as in Figure 12. The power spectrum
for the regular motion (a) is smooth and has few peaks,
at ωosc, 3ωosc, 5ωosc, ..., i.e. the harmonics expected for a
parametric oscillator. In (b) each peak broadens, develop-
ing further lateral features. For the most chaotic motion
(c) the power spectrum becomes very irregular with a large

-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

2 2.5 3 3.5 4 4.5

v C
M

xCM

(b)

-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

2.2 2.6 3 3.4 3.8

v C
M

xCM

(a)

-1.5

-1

-0.5

0

0.5

1

1.5

-5 0 5 10 15 20 25

v C
M

xCM

(c)

0.6

0.8

1

1.2

1.4

1.6

1.8

0 50 100 150 200

v C
M

xCM

(d)

Fig. 12. Phase space plot projected on the (xCM , vCM ) plane
for U0 = 0.6, K = 0.05 and four values of v0: v0 = 0.63 (a),
v0 = 0.8 (b), v0 = 1.4 (c) and v0 = 1.68 (d).
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Fig. 13. Power spectra of the relative coordinate |xr(ω)|2 for
U0 = 0.6, K = 0.05 and four values of v0: v0 = 0.63 (a),
v0 = 0.8 (b), v0 = 1.4 (c) and v0 = 1.68 (d).

number of peaks. This chaoticity disappears for higher ve-
locities (d), where the motion is regular and the power
spectrum is again smooth with a large peak at ω =

√
2K

corresponding to the dimer stretching frequency.

6 Conclusions and discussion

In this paper, we have studied a one-dimensional model
of a dimer moving on a rigid periodic substrate. We have
shown how the nonlinear effects due to the substrate po-
tential and to the interplay between the CM and rela-
tive motion can be relevant in determining the peculiar
characteristics of the dimer motion. A complex dynamical
behaviour is found as a function of the initial kinetic
energy with the occurrence of resonant instabilities and
chaotic motion. In particular, for weakly bound dimers
a chaotic regime is found for a whole range of veloci-
ties between two non-chaotic phases at low and high ki-
netic energy. We have characterized this chaotic regime by
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studying the Lyapunov exponents and power spectra.
Moreover, we have shown that if more realistic, finite-
range interactions are considered, dimer dissociation can
be induced via this mechanism by choosing appropriate
initial velocities.

Although our model neglects thermal fluctuations, we
can try to make some qualitative predictions concerning
the effect of a finite substrate temperature, modelled by
stochastic forces and a damping term, on the diffusive dy-
namics. The introduction of these effects could smear out
all the deterministic effects. The stable periodic orbits be-
come attracting centres via dissipation, so that the regular
and chaotic motions would be only transient. On the other
hand, temperature should be effective to provide energy to
escape from an attractor, giving rise to a diffusive motion.
Nevertheless, we expect that for small temperatures and
small friction coefficients, the thermal equilibration time
should be bigger than the equilibration time due to the
deterministic chaotic dynamics [6]. Thus, under such cir-
cumstances, the effects explained in this paper could be
significant also for real systems at finite temperature at
short time scales. In particular, diffusion should be highly
promoted for weakly bound dimers for which we found the
chaotic features. Indeed, as reported in reference [9], the
diffusion coefficient decreases by about an order of mag-
nitude with respect to the non-interacting case K = 0,
when the elastic constant is increased from K = 0 to
K = 0.25, at least for small values of the damping and the
temperature. Moreover, signatures of the chaotic regime
can be recognized in the jump length distribution: jumps
of the adsorbate over many lattice parameters are pre-
dicted by theoretical models (see for example [11,30]) and
observed experimentally (see [31]). A preliminary study of
the same model at T �= 0 shows that the coexistence of
localized and unbounded motion in Figure 12c is present
up to temperatures a few times higher than the potential
barrier 2U0 [32]. The relation between chaotic determinis-
tic diffusion and stochastic thermal diffusion is an impor-
tant topic currently under study [6,32]. This represents a
connection between the behaviour of our simplified model
and the one of more realistic systems. Therefore we be-
lieve that, beside their intrinsic interest, our results can
be of importance to understand the dynamical behaviour
of dimers moving onto real surfaces.

This work was supported by the Stichting Fundamenteel On-
derzoek der Materie (FOM) with financial support from the
Nederlandse Organisatie voor Wetenschappelijk Onderzoek
(NWO).

Note added in proof

After completion of this manuscript we have noted the re-
cent paper [A.S. Kovalev, A.I. Landau, Low. Temp. Phys.
28, 423 (2002)] presenting related numerical results of dif-
fusive dimer dynamics.
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